Formula to Latex

本文最后更新于 2 分钟前,文中所描述的信息可能已发生改变。

准确率(Accuracy)

Accuracy=TP+TNTP+TN+FP+FN\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}

精确率(Precision)

Precision=TPTP+FP\text{Precision} = \frac{TP}{TP + FP}

召回率(Recall)

Recall=TPTP+FN\text{Recall} = \frac{TP}{TP + FN}

F1 值(F1 Score)

F1=2×Precision×RecallPrecision+Recall\text{F1} = \frac{2\times Precision\times Recall}{Precision + Recall}

平均绝对百分比误差(MAPE)

MAPE=1ni=1nyiyi^yi×100%\text{MAPE} = \frac{1}{n}\sum_{i=1}^n\left\vert{\frac{y_i-\hat{y_i}}{y_i}}\right\vert\times100\%

平均平方误差(MSE)

MSE=1ni=1n(yiyi^)2\text{MSE} = \frac{1}{n}\sum_{i=1}^n(y_i-\hat{y_i})^2

决定系数(R2R^2

R2=1i=1n(yiyi^)2i=1n(yiyˉ)2R^2 = 1 - \frac{\sum_{i=1}^n(y_i - \hat{y_i})^2}{\sum_{i=1}^n(y_i - \bar{y})^2}

卷积层(Convoluational Layer)

y=Conv(x)=σ(Wx+b)y = Conv(x) = \sigma(W \ast x + b)

y=Conv(X)=σ(WX+b)y = \text{Conv}(\mathbf{X}) = \sigma(\mathbf{W} \ast \mathbf{X} + \mathbf{b})

通道注意力模块

Mc(F)=σ(MLP(AvgPool(F))+MLP(MaxPool(F)))\mathbf{M}_c(\mathbf{F}) = \sigma(\text{MLP}(\text{AvgPool}(\mathbf{F})) + \text{MLP}(\text{MaxPool}(\mathbf{F})))

空间注意力模块

Ms(F)=σ(f7×7([AvgPool(F);MaxPool(F)]))\mathbf{M}_s(\mathbf{F}') = \sigma(f^{7\times7}([\text{AvgPool}(\mathbf{F}'); \text{MaxPool}(\mathbf{F}')]))

池化层(Pooling Layer)

Zipool=maxjR(i)zjZ_i^{pool} = \max_{j\in \mathcal{R}(i)}z_j

Zipool=max(zi×s,zi×s+1,,zi×s+(n1))Z_i^{pool} = \max (z_{i\times s}, z_{i\times s+1}, \dots, z_{i\times s+(n-1)})

Zipool=max(zi,zi+1,,zi+n1)Z_i^{pool} = \max (z_{i}, z_{i+1}, \dots, z_{i+n-1})

全连接层(Fully Connected Layer)

y=σ(Wfx+bf)y = \sigma(W_fx + b_f)

y=σ(Wfx+bsf)\mathbf{y} = \sigma(\mathbf{W}_f \mathbf{x} + \mathbf{bs}_f)

参考文献
Pinely Round 5